Enhance your web and mobile applications with powerful AI capabilities. Our AI Integration service helps you incorporate machine learning models into your existing systems to automate processes, improve user experiences, and unlock new business opportunities.
We understand that AI integration can be complex, especially if you're new to machine learning. That's why we take a highly collaborative approach, working closely with you at every stage. We'll handle the technical implementation while ensuring you understand the process, capabilities, and limitations. This partnership ensures the final solution aligns perfectly with your business goals while building your team's knowledge of AI applications.
Our AI integration solution uses Python, Flask, and modern web technologies:
*Example Code AI Integration implementation with Python and Flask
import os import numpy as np import pandas as pd import joblib from flask import Flask, request, jsonify from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler # Initialize Flask app app = Flask(__name__) # Load pre-trained model and scaler model_path = os.path.join(os.path.dirname(__file__), 'models', 'prediction_model.pkl') scaler_path = os.path.join(os.path.dirname(__file__), 'models', 'scaler.pkl') model = joblib.load(model_path) scaler = joblib.load(scaler_path) # Define prediction endpoint @app.route('/api/predict', methods=['POST']) def predict(): # Get data from request data = request.json # Validate input required_fields = ['feature1', 'feature2', 'feature3', 'feature4'] for field in required_fields: if field not in data: return jsonify({'error': f'Missing required field: {field}'}), 400 # Prepare features features = [[ data['feature1'], data['feature2'], data['feature3'], data['feature4'] ]] # Scale features scaled_features = scaler.transform(features) # Make prediction prediction = model.predict(scaled_features)[0] prediction_proba = model.predict_proba(scaled_features)[0].tolist() # Return result return jsonify({ 'prediction': int(prediction), 'confidence': max(prediction_proba), 'probabilities': prediction_proba }) # Define model retraining endpoint (admin only) @app.route('/api/retrain', methods=['POST']) def retrain_model(): # Authentication would be implemented here # Get training data training_data = request.json.get('training_data') if not training_data: return jsonify({'error': 'No training data provided'}), 400 # Convert to DataFrame df = pd.DataFrame(training_data) # Separate features and target X = df.drop('target', axis=1) y = df['target'] # Scale features scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Train new model model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_scaled, y) # Save model and scaler joblib.dump(model, model_path) joblib.dump(scaler, scaler_path) return jsonify({'success': True, 'message': 'Model retrained successfully'}) # Web integration example (JavaScript) ''' // Example of frontend JavaScript to call the prediction API async function getPrediction(userData) { const response = await fetch('/api/predict', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ feature1: userData.age, feature2: userData.income, feature3: userData.purchaseHistory, feature4: userData.websiteActivity }) }); const result = await response.json(); if (result.prediction === 1) { // Show personalized recommendation showRecommendation(result.confidence); } else { // Show default content showDefaultContent(); } } ''' # Run the Flask app if __name__ == '__main__': app.run(debug=False, host='0.0.0.0', port=5000)
Approximately 8-12 weeks from project kickoff, depending on complexity and scope.
Businesses looking to enhance their digital products with intelligent features such as personalized recommendations, predictive analytics, content moderation, image recognition, or natural language processing. Particularly valuable for e-commerce platforms, content-heavy websites, customer service applications, and data-driven businesses.