Transform your customer data into actionable insights with our specialized customer segmentation solution, helping you identify distinct customer groups and tailor your marketing strategies accordingly.
Our customer segmentation solution uses Python and advanced clustering algorithms:
*Example Code Customer Segmentation implementation with Python
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score # Load and prepare customer data def prepare_customer_data(data_path): df = pd.read_csv(data_path) # Handle missing values df = df.dropna() # Select relevant features for segmentation features = ['purchase_frequency', 'recency', 'monetary_value', 'product_categories', 'engagement_score'] # Feature engineering df['customer_lifetime_value'] = df['monetary_value'] * df['purchase_frequency'] # Normalize features scaler = StandardScaler() df_scaled = scaler.fit_transform(df[features]) return df, df_scaled, features # Determine optimal number of clusters def find_optimal_clusters(data_scaled): silhouette_scores = [] K = range(2, 11) for k in K: kmeans = KMeans(n_clusters=k, random_state=42) kmeans.fit(data_scaled) silhouette_scores.append(silhouette_score(data_scaled, kmeans.labels_)) optimal_k = K[np.argmax(silhouette_scores)] return optimal_k # Create and analyze customer segments def create_customer_segments(df, data_scaled, optimal_k, features): kmeans = KMeans(n_clusters=optimal_k, random_state=42) df['segment'] = kmeans.fit_predict(data_scaled) # Analyze segments segment_analysis = df.groupby('segment').agg({ 'purchase_frequency': 'mean', 'recency': 'mean', 'monetary_value': 'mean', 'engagement_score': 'mean', 'customer_lifetime_value': 'mean' }) return df, segment_analysis, kmeans.cluster_centers_ # Visualize segments def visualize_segments(df, features): # Reduce dimensions for visualization pca = PCA(n_components=2) principal_components = pca.fit_transform(df[features]) # Create visualization plt.figure(figsize=(10, 8)) sns.scatterplot(x=principal_components[:, 0], y=principal_components[:, 1], hue=df['segment'], palette='viridis') plt.title('Customer Segments Visualization') plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.savefig('customer_segments.png') return principal_components, pca.explained_variance_ratio_
Approximately 3-4 weeks from project kickoff and receipt of your customer data.
Businesses with customer data looking to improve marketing effectiveness, personalize customer experiences, optimize product offerings, or increase customer retention. Particularly valuable for e-commerce, retail, SaaS, and service-based businesses.