Transform your customer data into actionable insights with our specialized customer segmentation solution, helping you identify distinct customer groups and tailor your marketing strategies accordingly.
Our customer segmentation solution uses Python and advanced clustering algorithms:
*Example Code Customer Segmentation implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
# Load and prepare customer data
def prepare_customer_data(data_path):
df = pd.read_csv(data_path)
# Handle missing values
df = df.dropna()
# Select relevant features for segmentation
features = ['purchase_frequency', 'recency', 'monetary_value',
'product_categories', 'engagement_score']
# Feature engineering
df['customer_lifetime_value'] = df['monetary_value'] * df['purchase_frequency']
# Normalize features
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df[features])
return df, df_scaled, features
# Determine optimal number of clusters
def find_optimal_clusters(data_scaled):
silhouette_scores = []
K = range(2, 11)
for k in K:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(data_scaled)
silhouette_scores.append(silhouette_score(data_scaled, kmeans.labels_))
optimal_k = K[np.argmax(silhouette_scores)]
return optimal_k
# Create and analyze customer segments
def create_customer_segments(df, data_scaled, optimal_k, features):
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
df['segment'] = kmeans.fit_predict(data_scaled)
# Analyze segments
segment_analysis = df.groupby('segment').agg({
'purchase_frequency': 'mean',
'recency': 'mean',
'monetary_value': 'mean',
'engagement_score': 'mean',
'customer_lifetime_value': 'mean'
})
return df, segment_analysis, kmeans.cluster_centers_
# Visualize segments
def visualize_segments(df, features):
# Reduce dimensions for visualization
pca = PCA(n_components=2)
principal_components = pca.fit_transform(df[features])
# Create visualization
plt.figure(figsize=(10, 8))
sns.scatterplot(x=principal_components[:, 0], y=principal_components[:, 1],
hue=df['segment'], palette='viridis')
plt.title('Customer Segments Visualization')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.savefig('customer_segments.png')
return principal_components, pca.explained_variance_ratio_
Approximately 3-4 weeks from project kickoff and receipt of your customer data.
Businesses with customer data looking to improve marketing effectiveness, personalize customer experiences, optimize product offerings, or increase customer retention. Particularly valuable for e-commerce, retail, SaaS, and service-based businesses.